Connecting Information Geometry and Geometric Mechanics

نویسندگان

  • Melvin Leok
  • Jun Zhang
چکیده

The divergence function in information geometry, and the discrete Lagrangian in discrete geometric mechanics each induce a differential geometric structure on the product manifold Q×Q. We aim to investigate the relationship between these two objects, and the fundamental role that duality, in the form of Legendre transforms, plays in both fields. By establishing an analogy between these two approaches, we will show how a fruitful cross-fertilization of techniques may arise from switching formulations based on the cotangent bundle T∗Q (as in geometric mechanics) and the tangent bundle TQ (as in information geometry). In particular, we establish, through variational error analysis, that the divergence function agrees with the exact discrete Lagrangian up to third order if and only if Q is a Hessian manifold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Analysis in curved spaces with Non-Euclidean Geometry

The ultimate goal of spatial information, both as part of technology and as science, is to answer questions and issues related to space, place, and location. Therefore, geometry is widely used for description, storage, and analysis. Undoubtedly, one of the most essential features of spatial information is geometric features, and one of the most obvious types of analysis is the geometric type an...

متن کامل

The Connection between Information Geometry and Geometric Mechanics

Abstract: The divergence function in information geometry, and the discrete Lagrangian in discrete 1 geometric mechanics each induce a differential geometric structure on the product manifold QˆQ. 2 We aim to investigate the relationship between these two objects, and the fundamental role that 3 duality, in the form of Legendre transforms, play in both fields. By establishing an analogy between...

متن کامل

Analysis of Herat embroidery patterns from the perspective of fractal geometry

Geometric shapes and motifs are a combination of the human spiritual mind which sees the existence of beautiful and paints a historical civilization through this vision. The geometric motifs are an expression of the rhythmic and balanced human beings possessions when the human being wants to imagine beyond the present and create a world full of love. The patterns/shapes are the basis of artwork...

متن کامل

Nonholonomic Ricci Flows: I. Riemann Metrics and Lagrange–Finsler Geometry

In this paper, it is elaborated the theory the Ricci flows for manifolds enabled with nonintegrable (nonholonomic) distributions defining nonlinear connection structures. Such manifolds provide a unified geometric arena for nonholonomic Riemannian spaces, Lagrange mechanics, Finsler geometry, and various models of gravity (the Einstein theory and string, or gauge, generalizations). We follow th...

متن کامل

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017